Chain photoreduction of CCl3F in TiO2 suspensions: enhancement induced by O2.

نویسندگان

  • Kurt Winkelmann
  • Robert L Calhoun
  • German Mills
چکیده

Trichlorofluoromethane (CFC 11) was photoreduced in aqueous suspensions of TiO2 particles containing HCO2- ions and air. Dissolved O2 inhibited the reaction during an induction period that preceded the rapid formation of chloride ions. Reaction rates were higher in systems containing O2 as compared to analogous reactions that occurred in anaerobic suspensions. High photonic efficiencies of Cl- formation (> or =15) were achieved using suspensions with pH > or = 5. As was the case for studies with air-free suspensions, reactions are best described using a photoinitiated chain mechanism that produced CHCl2F and Cl- during the propagation steps. The enhanced yields obtained in the presence of air are attributed to the removal by O2 of electrons trapped in the oxide, which are converted first into H2O2 and then into reducing radicals that participate in the chain process. Enhanced yields of Freon photoreduction were also observed during illumination of air-free suspensions containing hydrogen peroxide, which were interpreted using a similar mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Periodic Illumination and Aqueous/Organic Interfacial Surface Area on Chain Propagation of CCl3F Reduction

Chemical reactions can be initiated on the surface of semiconducting titanium dioxide particles suspended in solution by the absorption of ultraviolet light. Photogenerated conduction band electrons (e cb) and valence band holes (h + vb) become delocalized within the semiconductor. These charge carriers either recombine releasing heat or migrate to the TiO2 surface where they can form radicals,...

متن کامل

Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts.

We found that plasmonic Au particles on titanium(iv) oxide (TiO2) act as a visible-light-driven photocatalyst for overall water splitting free from any additives. This is the first report showing that surface plasmon resonance (SPR) in a suspension system effectively induces overall water splitting. Modification with various types of metal nanoparticles as co-catalysts enhanced the evolution of...

متن کامل

Highly efficient nitrobenzene photoreduction over the amino acid-modified CdS-TiO2 nanostructures under visible light

CdS-coupled TiO2 nanocrystals were prepared by the microemulsion-mediated solvothermal method at pretty low temperatures. The semiconductor nanocrystals were modified with tyrosine, phenyl alanine, glysine and glutamate aminoacids and then were characterized by BET, SEM, EDX, XRD, UV–Vis spectroscopy, and FTIR analysis methods. The specific surface area and the average pore diameter ...

متن کامل

Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst.

Direct splitting of pure water into hydrogen and oxygen was demonstrated using the rutile TiO2 powder under band gap irradiation. The successful water splitting results at least in part from the intrinsic properties of the rutile surface that is less sensitive to photoreduction of O2, a reverse reaction in water splitting.

متن کامل

The enhancement of photodegradation efficiency using Pt-TiO2 catalyst.

This study investigates the mechanism of photosensitization and the recombination of excited electron-hole pairs affected by depositing platinum (Pt) on the surface of titanium dioxide (TiO2). A new catalyst of Pt-TiO2 was prepared by a photoreduction process. Being model reactions, the photocatalytic oxidation of methylene blue (MB) and methyl orange (MO) in aqueous solutions using the Pt-TiO2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 51  شماره 

صفحات  -

تاریخ انتشار 2006